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Abstract—We consider a wireless downlink network with a
single base-station, N mobile users and L shared on-off channels.
Each mobile user receives a downlink traffic flow from the base-
station where a separate queue is maintained for each flow.
In this multi-channel downlink network, throughput-optimal
scheduling algorithms such as the MaxWeight scheduling require
the complete channel state information (i.e., NL channel states)
for scheduling. This could be a significant overhead when the
number of mobile users is large. This paper considers wireless
downlink networks with limited feedback bandwidth so that
at most F of the NL channel states can be reported at each
time slot. We propose dynamic feedback allocation schemes,
named as Longest-Queue-First Feedback-Allocation (LQF-FA)
and Modified-Longest-Queue-First Feedback-Allocation (MLQF-
FA), which dynamically and adaptively allocate the feedback
resource according to queue-lengths and channel statistics.
We prove that given a fixed feedback resource F, the LQF-
FA+MaxWeight is throughput-optimal under a mean approx-
imation; and the throughput difference between the MLQF-
FA+MaxWeight and the MaxWeight with the complete channel
state information decreases exponentially as a function of F/L
when F = O(L2).

I. INTRODUCTION

Scheduling is one of the key challenges in wireless network
design. In a seminal work [1], the authors have shown that
with the complete queue and channel state information, the
MaxWeight scheduling can stabilize the network given any
traffic load that is within the network throughput region. For
a cellular downlink network consisting of a base station and
multiple mobile users, the queue lengths are readily available
at the base-station, but the channel states, in many cases, need
to be measured by mobile users, and reported to the base-
station. With the increase of network capacity (i.e., the increase
of supportable mobile users), reporting the complete channel
state information could consume a significant amount of
communication resource. Because of that, in current and next
generation cellular standards, such as 802.16e [2], 802.11m
[3], and LTE [4], the feedback bandwidth is limited and
each mobile can only report a few channel states. A mobile
user measures all the channels and selects a subset of them
to report. In most existing systems, the feedback bandwidth
is evenly distributed to mobile users. While this feedback
allocation provides a simple solution under feedback resource
constraint, the efficiency of this scheme is questionable. As
we have learnt from the MaxWeight scheduling [1], [5],
[6], [7], [8], a high-performance scheduling algorithm should

dynamically allocate resource based on channel conditions and
traffic demands, which motivates us to consider dynamical
feedback resource allocation schemes under limited feedback
bandwidth.

Scheduling with limited network state information has been
studied in [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19]. This paper studies a different model, which is motivated
by a downlink network using multi-carrier techniques such
as Orthogonal Frequency Division Multiplexing (OFDM). We
consider a wireless downlink network with a base station,
N mobile users, and L shared fading channels (frequency
bands). During each time slot, a channel can be used by at
most one mobile user. The channel is assumed to be on-off
channels, which have identical and independent distributions
across channels, time and users. We assume the transmission
on each channel is with the same modulation and coding
scheme, which implies that the transmission rate is the same
when a channel is on. We also assume the probability that a
channel is on is known by the base station. A mobile user
can measure the states of all channels, but can only report a
subset of them to the base-station. The number of channels
a mobile user can report (i.e., the feedback bandwidth of the
mobile user) is decided by the base-station. For this model,
we address the following two basic questions:

(i) how should we allocate the limited feedback bandwidth
to maximize the network throughput; and

(ii) how much feedback bandwidth is necessary for a near-
optimal throughput?

The main contributions of this paper include:

• We characterize the network throughput region under
limited feedback bandwidth.

• Under a mean approximation, i.e., assuming that the
number of on channels is pL for each of the mobile users
where p is the probability a channel being on, we develop
the Longest-Queue-First Feedback-Allocation (LQF-FA)
scheme. Combined with the MaxWeight scheduling,
LQF-FA+MW is throughput optimal under the mean
approximation.

• We then propose a Modified-Longest-Queue-First
Feedback-Allocation (MLQF-FA) scheme. We prove
that the throughput difference between the MLQF-
FA+MaxWeight and the MaxWeight with the complete
channel state information decreases exponentially as a



function of F/L when F = O(L2).

II. SYSTEM MODEL

We consider a cellular downlink network with a single base
station and N mobile users. Each user associates with a down-
link data flow, and the base station maintains a separate queue
for each flow. The N flows are transmitted over L shared on-
off channels. Denote by Xij(t) the state of channel j to user
i at time slot t. We assume that Xij(t) are independently and
identically (i.i.d.) distributed over users, channels, and time,
and

Xij(t) =
{
R, with probability p;
0, with probability 1− p.

At time t, we define Yij(t) to be the state of channel j available
at the base station, i.e.,

Yij(t) =
{
Xij(t), if channel j is reported by user i ;
0, otherwise.

We further define Zij(t) to be the scheduling decision of the
base station such that

Zij(t) =
{

1, if user i is served over channel j at time t;
0, otherwise.

We assume that a channel can be used to served at most one
user at a time so that

L∑
j=1

Zij(t) ≤ 1

for all i and t.
We assume that the transmission to user i over channel j

cannot succeed if the channel state is not reported. Denoting
by Di(t) the service rate allocated to user i, we have that

Di(t) =
L∑
j=1

Yij(t)Zij(t).

Next let Ai(t) denote the number of packets injected to the
queue maintained for user i at time t. Assume that Ai(t) are
bounded random variables, which are independent across users
and time, and are independent of Xij(t). We further assume
that the packets are injected at the beginning of each time slot,
and are served at the end of each time slot. To this end, the
evolution of queue i can be written as:

Qi(t+ 1) = (Qi(t) +Ai(t)−Di(t))+ (1)

where Qi(t) is the queue length for user i at the beginning of
time slot t, and (x)+ = max{x, 0}. Furthermore, define Ui(t)
to be the unused service rate due to the lack of packets, i.e.,

Ui(t) =
{

0, if Di(t) ≤ Qi(t) +Ai(t);
Di(t)−Qi(t)−Ai(t), otherwise.

The queue evolution can be written as:

Qi(t+ 1) = Qi(t) +Ai(t)−Di(t) + Ui(t). (2)

Assuming that the base-station has the complete channel
state information, we can treat each channel as a single-server

and apply the MaxWeight scheduling to select a user for each
channel.

MaxWeight Scheduling: Channel j is allocated to to user
i∗(t) such that

i∗(t) ∈ arg max
i
Qi(t)Xij(t).

�
Given the complete complete channel state, the MaxWeight

scheduling solves the following optimization problem:

max{Zij}
∑
i,j Qi(t)Xij(t)Zij

Subject to:
∑
j Zij ≤ 1, Zij ∈ {0, 1}.

While the Max-Weight scheduling is throughput-optimal [1],
the bases-station needs to collect the complete channel state
information (Xij(t)). For the system considered in this paper,
the base-station needs to obtain the N × L channel states
for scheduling, which means the feedback bandwidth required
is Θ(NL). With the increase of mobile users, obtaining the
complete channel state information will require a significant
amount of uplink bandwidth. We assume that the wireless
downlink network only allocate limited bandwidth for feed-
back so that at most F channel states can be reported to the
base station at a time. In this system, the base-station needs to
allocate the feedback bandwidth intelligently to maximize the
network throughput. In this paper, we assume that the channel
feedback is collected with two steps:
Two-step channel state feedback:
• At the beginning of each time slot, the base station

decides a feedback allocation vector ~m(t), which is of
length N, mi(t) ≥ 0 for all i and t, and

∑F
i=1mi(t) ≤ L.

This feedback allocation vector is then broadcast to all
mobile users.

• At each time slot, mobile user i can measure all L channel
states {Xij}j=1,...,L, and can report at most mi(t) of
them to the base station. Denote by Oi(t) the number
of on channels related to user i at time t. If Oi(t) ≤
mi(t), user i reports all on channels to the base-station;
otherwise, user i randomly and uniformly selects mi(t)
of the Oi(t) users to report.

�
Note that in most existing cellular systems, the feedback

bandwidth is evenly distributed to all users, i.e., mi(t) = F
N

for all i and t. The efficiency of this feedback resource
allocation, however, is questionable. We note that the network
throughput is constrained by the feedback resource because
the traffic flows can only be sent over those reported channels.
Therefore we are interested in feedback allocation scheme that
can maximize the network throughput.

To evaluate the efficiency of a feedback allocation ~m(t),
we study the expected value of the following optimization
problem for a given ~m(t) :

max
{Zij}

∑
i,j

Qi(t)Yij(t)Zij

Subject to:
∑
j Zij ≤ 1, Zij ∈ {0, 1},



where the distribution of Yij(t) is determined by the feedback
allocation vector ~m(t) and the channel statistics under the
two-step channel state feedback mechanism. The reason we
choose E

[
max{Zij}

∑
i,j Qi(t)Yij(t)Zij

]
as the performance

metrics is that the ratio of E
[
max{Zij}

∑
i,j Qi(t)Yij(t)Zij

]
and E

[
max{Zij}

∑
i,j Qi(t)Xij(t)Zij

]
is closely related to

the throughput loss due to limited feedback bandwidth.
More specifically, we define

g(full, ~Q(t)) = E

 max∑
j Zij≤1

∑
i,j

Qi(t)Xij(t)Zij(t)

 .
Given ~m(t), we define

g(~m(t), ~Q(t)) = E

 max∑
j Zij≤1

∑
i,j

Qi(t)Yij(t)Zij(t)|~m(t)

 ,
where the distribution of Yij(t) is determined by ~m(t).

It is easy to see that given Yij(t), the MaxWeight schedul-
ing, which schedules user

i∗(t) ∈ arg max
i
Qi(t)Yij(t)

for channel j, always maximizes
∑
i,j Qi(t)Yij(t)Zij(t).

Therefore, denoting ZMX
ij (t) to be the scheduling decision

under the MaxWeight scheduling, g(full, ~Q(t)) and g(~m(t)
can be re-written as:

g(full, ~Q(t)) = E

∑
i,j

Qi(t)Yij(t)ZMW
ij (t)


g(~m(t), ~Q(t)) = E

∑
i,j

Qi(t)Yij(t)ZMW
ij (t)|~m(t)

 .
Next we say a traffic load ~A(t) is supportable if there exists

a scheduling algorithm and feedback allocation scheme that
guarantee that the means of the queues are bounded. Based
on the notations and definition above, we have the following
theorems:

Theorem 1: Assume that the network can support F feed-
back at a time. Given a feedback allocation scheme, which
guarantees that

g(~m(t), ~Q(t)) = max
~m:
∑

i mi≤F
g(~m, ~Q(t)) (3)

holds for all t, then the feedback allocation scheme, combined
with the MaxWeight scheduling, can support any traffic load
that is supportable under feedback constraint F.

�
Theorem 2: Given a feedback allocation scheme, which

guarantees that (1+δ)g(~m(t), ~Q(t)) ≥ g(full, ~Q(t)) holds for
all t, then the feedback allocation scheme, combined with the
MaxWeight scheduling, can support any traffic load ~A(t) such
that (1+ δ) ~A(t) supportable under the MaxWeight scheduling
with the complete channel state information.

�
Remark 1: These two theorems can be proved using the

standard Lyapunov drift analysis, and are ignored in this paper.
Remark 2: Theorem 1 provides a feedback-resource allo-

cation scheme, which guarantees throughput optimality when
combined with the MaxWeight scheduling. However, solving
the optimization problem max~m:

∑
i mi≤F g(~m(t), ~Q(t)) could

be computationally expensive. We therefore derive simple
feedback-resource allocation schemes based on a mean ap-
proximation.

III. OPTIMAL FEEDBACK SCHEME UNDER A MEAN
APPROXIMATION

In this section, we derive a feedback scheme that is optimal
under the mean approximation, i.e., we assume that the number
of on channels of each user is exactly pL. Under the mean
approximation, it is easy to see that there is no need to ask
a user to report more than pL channels, so we consider ~m(t)
such that mi(t) ≤ pL for all i. Next we first derive the
closed form expression of Qi(t)E

[
Di(t)

∣∣∣ ~Q(t), ~m(t)
]

under
the mean approximation.

Lemma 1: Given a feedback-resource allocation vector
~m(t) where mi(t) ≤ pL for all i, we have

Qi(t)E
[
Di(t)| ~Q(t), ~m(t)

]
= Qi(t)Rmi(t)

i−1∏
k=1

(
1− mk(t)

L

)
. (4)

Proof: Since the channels are i.i.d., we can obtain that

Qi(t)E[Di(t)| ~Q(t), ~m(t)]

= Qi(t)E

 L∑
j=1

Yij(t)ZMW
ij (t)

∣∣∣∣∣∣ ~Q(t), ~m(t)


= LQi(t)E[Yij(t)ZMW

ij (t)| ~Q(t), ~m(t)]. (5)

Without loss of generality, we now assume Qi(t) is sorted in
a descent order such that Qi≤Qj if i > j. Therefore, channel j
is allocated to user i if and only if the following two conditions
hold:
(i) channel j is on and is reported by user i; and

(ii) the base station does not receive any report of channel j
from users with an index smaller than i.

Recall that we only need to consider ~m(t) such that mi(t) ≤
pL, so we first obtain that

Pr(channel 1 to user i is on and reported|~m(t))

= p× mi(t)
pL

=
mi(t)
L

,

which implies that

Qi(t)E
[
Yij(t)ZMX

ij (t)
∣∣ ~Q(t), ~m(t)

]
= Qi(t)R

mi(t)
L

i−1∏
k=1

(
1− mk(t)

L

)
, (6)



holds for all channel j. Therefore,

Qi(t)E
[
Di(t)| ~Q(t), ~m(t)

]
= Qi(t)Rmi(t)

i−1∏
k=1

(
1− mk(t)

L

)
, (7)

and the lemma holds.

Now based on the expression (4), we will derive two
important lemmas that will lead to the optimal feedback
allocation policy. Assume that the queues are sorted in a
descent order. Lemma 2 shows that if user i receives less
feedback resource than user i + 1, then we can swap their
feedback resource to improve g(·, ~m(t)). Lemma 3 shows
that we can move the feedback resource from user i, where
i = max{k : mk(t) > 0} to user i− 1 to improve g(·, ~m(t))
if mi(t) ≤ mi−1(t). The optimal policy is then obtained
by repeatedly re-arrange the feedback allocation according to
Lemma 2 and Lemma 3.

Lemma 2: Given a feedback allocation ~m(t) such that
mi(t) < mi+1(t), we can construct an alternative feedback al-
location ~m′(t) such that m′i(t) = mi+1(t), m′i+1(t) = mi(t),
and m′j(t) = mj(t) for j 6= i, i+ 1, and

g(~m(t), ~Q(t)) ≥ g(~m′(t), ~Q(t)).

Proof: First, it is easy to verify that for any user k such
that k < i,

E
[
Dk(t)

∣∣∣ ~Q(t), ~m(t)
]

= E
[
Dk(t)

∣∣∣ ~Q(t), ~m′(t)
]

(8)

because Dk(t) is independent of the channel states of user h
such that h > k (Lemma 1).

Further, according to Lemma 1, it is easy to see that
exchanging the feedback resource of user i and user i+1 will
not change the conditional expectation of Dk(t) for k > i+1,
i.e.,

E
[
Dk(t)

∣∣∣ ~Q(t), ~m(t)
]

= E
[
Dk(t)

∣∣∣ ~Q(t), ~m′(t)
]

for any k > i+ 1.

From the observations above and Lemma 1, we can finally
obtain that

g(~m′(t), ~Q(t))− g(~m(t), ~Q(t))

= E
[
Qi(t)Di(t) +Qi+1(t)Di+1(t)

∣∣∣ ~Q(t), ~m(t)
]

−E
[
Qi(t)Di(t) +Qi+1(t)Di+1(t)

∣∣∣ ~Q(t), ~m′(t)
]

= R

i−1∏
k=1

(
1− mi(t)

L

)
×(

mi+1(t)Qi(t) +
(

1− mi+1(t)
L

)
mi(t)Qi+1(t)

−mi(t)Qi(t)−
(

1− mi(t)
L

)
mi+1(t)Qi+1(t)

)
= R

i−1∏
k=1

(
1− mi(t)

L

)
×

(mi+1(t)Qi(t) +mi(t)Qi+1(t)
−mi(t)Qi(t)−mi+1(t)Qi+1(t))

= R

i−1∏
k=1

(
1− mi(t)

L

)
×

(mi+1(t)−mi(t))(Qi(t)−Qi+1(t))
≥ 0,

where the last inequality holds because mi+1(t) > mi(t) and
Qi(t) ≥ Qi+1(t) according to the assumptions.

Lemma 3: Given a feedback allocation ~m(t) such that
pL > mi(t) ≥ mi+1(t) > 0 and mk(t) = 0 for all k > i+ 1,
we can construct an alternative feedback allocation ~m′(t)
such that m′i(t) = mi(t) + 1, m′i+1(t) = mi+1(t) − 1, and
m′j(t) = mj(t) for j 6= i, i+ 1, and

g(~m(t), ~Q(t)) ≥ g(~m′(t), ~Q(t)).

Proof: We compare g(·) under the two different feedback
allocations. Since mk(t) = m′i(t) = 0 for all k > i + 1, and
Dk(t) is independent of the channel states of user h for any



k and any h > k, we can obtain that

g(~m′(t), ~Q(t))− g(~m(t), ~Q(t))

= E
[
Qi(t)Di(t) +Qi+1(t)Di+1(t)

∣∣∣ ~Q(t), ~m(t)
]

−E
[
Qi(t)Di(t) +Qi+1(t)Di+1(t)

∣∣∣ ~Q(t), ~m′(t)
]

= RQi(t)

(
i−1∏
k=1

(
1− mk(t)

L

))
((mi(t) + 1)−mi(t))

+ RQi+1(t)

(
i−1∏
k=1

(
1− mk(t)

L

))
×((

1− mi(t) + 1
L

)
(mi+1(t)− 1)

−
(

1− mi(t)
L

)
mi+1(t)

)
= R

(
i−1∏
k=1

(1− mk(t)
L

)

)
×(

Qi(t)−
L−mi(t) +mi+1(t)− 1

L
Qi+1(t)

)
≥ R

i−1∏
k=1

(
1− mk(t)

L

)
(Qi(t)−Qi+1(t))

≥ 0

Next, we consider a simple resource allocation algorithm
based on the mean approximation, which we name as Longest-
Queue-First Feedback-Allocation (LQF+FA):
Longest-Queue-First Feedback-Allocation (LQF+FA): As-
suming that at most F channel states can be reported at each
time slot and the users are sorted in a descent order according
to their queue lengths, the feedback resource allocation vector
~m(t) is as follows:

mi(t) =


pL, i ≤

⌊
F
pL

⌋
;

F (mod pL), i =
⌈
F
pL

⌉
;

0, otherwise.

�
Theorem 3: Given the feedback resource constraint F, the

LQF-FA+MaxWeight maximizes g(~m(t), ~Q(t)). Therefore the
LQF-FA+MaxWeight is throughput optimal under the mean
approximation.

Proof: Denote by ~mLQF−FA(t) to be the feedback al-
location vector under LQF-FA. In the following analysis, we
prove that given the feedback budget F,

g(~mLQF−FA(t), ~Q(t)) ≥ g(~m(t), ~Q(t))

for any ~m(t) such that
∑
imi(t) ≤ F. The idea is to transform

any feedback allocation ~m(t) to ~mLQF+FA(t) in a way that
the value of g(·, ~Q(t))(t) is not reduced.

Given an allocation scheme ~m(t), we transform it to
~mLQF+FA(t) by repeating the following two steps:

(1) Step 1 - Reordering: If mi(t) < mi+1(t), we exchange
the feedback resource allocated to user i and user i+ 1.
Repeat this until we get a feedback allocation ~m(t)
such that mi(t) ≥ mj(t) if i < j. According to
Lemma 2, this reordering will not reduce the value
of g(·, ~Q(t)). After the reordering, the process stops if
~m(t) = ~mLQF+FA(t); otherwise goes to step 2.

(2) Step 2 - Reallocation: After the reordering, we find
user i such that

i = max{k : mk(i) 6= 0}.

We then reallocate the feedback resource of user i to
user i− 1 until mi−1(t) = pL. According to Lemma 3,
this reallocation will not reduce the value of g(·, ~Q(t)).
After the reallocation, the process stops if ~mLQF+FA(t)
is obtained; otherwise, goes to step 1.

It is easy to see after a complete operation of step 1 —
step 2 — step 1, we can obtain a feedback allocation scheme
~m(t) such that m1(t) = min{pL, F}. Therefore the LQF-FA
allocation can be obtained in a finite number of iterations.
Since g(·, ~Q(t)) is not reduced in either step 1 or step 2, so

g(~mLQF−FA(t), ~Q(t)) ≥ g(~m(t), ~Q(t))

for any ~m(t). The theorem holds due to Theorem 1.

IV. MODIFIED LQF-FA SCHEME

Motivated by the LQF-FA, we propose the following Mod-
ified LQF-FA and analyze its performance without the mean
approximation.
Modified-Longest-Queue-First Feedback-Allocation
(MLQF-FA): Assuming that at most F channel states can
be reported at each time slot and the users are sorted in a
descent order according to their queue lengths, the feedback
resource allocation vector ~m(t) is as follows:

mi(t) =


(1 + δ)pL, i ≤

⌊
F

(1+δ)pL

⌋
;

F (mod (1 + δ)pL), i =
⌈

F
(1+δ)pL

⌉
;

0, otherwise.

,

where δ > 0.
�

We will prove that compared to the MaxWeight scheduling
with the complete channel state information, the throughput
loss of the MLQF-FA+MaxWeight decreases exponentially
as a function of F/L. Before the detail analysis, we first
introduce several new notations. We denote by Dfull

i (t) the
service rate allocated to user i under the MaxWeight with
the complete network state information, and Dfull

ij (t) the rate
contribution from channel j to user i under the MaxWeight
with the complete network state information.

Theorem 4: Given a feedback resource constraint F, the
MLQF-FA+MaxWeight can support any traffic load ~A(t) such
that (1 + δ) ~A(t) is supportable under the MaxWeight with the
complete channel state information, where

δ =
1
p2

exp
(
−δ

2pL

3

)
+

1
p

exp
(
−
⌊

F

(1 + δ)pL

⌋
log

1
1− p

)
.



Proof: We first consider the MaxWeight scheduling with
the complete channel state information:

Qi(t)E
[
Dfull
i (t)| ~Q(t)

]
=

L∑
j=1

Qi(t)E
[
Dfull
ij (t)| ~Q(t)

]
= LQi(t)E

[
Dfull
i1 (t)| ~Q(t)

]
= LQi(t)pR×

Pr(channel 1 is not on for users {1, . . . , i− 1})
= LRp(1− p)i−1Qi(t).

As a result, we can obtain that

N∑
i=1

Qi(t)E[Dfull
i (t)| ~Q(t)] =

N∑
i=1

LRpQi(t)(1− p)i−1

≤ LRpQ1(t)
N∑
i=1

(1− p)i−1

< LRQ1(t). (9)

Now we consider MLQF-FA+MaxWeight. For any user i
such that i ≥ n+ 2 where n =

⌊
F

(1+δ)pL

⌋
, we have

Qi(t)E[Di(t)| ~Q(t), ~mMLQF−FA(t)] = 0. (10)

Now we consider user i such that i ≤ n. Recall that Oi(t) is
the number of on channels to user i. Since the channels are
i.i.d. on-off channels, according to the Chernoff’s bound, we
have

Pr (Oi(t) ≥ (1 + δ)pL) ≤ exp
(
−δ

2pL

3

)
.

Therefore, when a user is assigned with (1 + δ)pL feedback
budgets, the probability that a channel is on and reported is at
least

p− exp
(
−δ

2pL

3

)
,

which implies for any i ≤ n,

Qi(t)E[Di(t)| ~Q(t), ~mMLQF−FA(t)]

≥ LR(1− p)i−1

(
p− exp

(
−δ

2pL

3

))
Qi(t). (11)

According inequalities (9) and (11), we can conclude that

g(full, ~Q(t))− g(~mMLQF−FA(t), ~Q(t))

≤
n∑
i=1

(1− p)i−1LRQi(t) exp
(
−δ

2pL

3

)

+
N∑

i=n+1

(1− p)i−1LRpQi(t)

≤ LRQ1(t)
p

exp
(
−δ

2pL

3

)
+ LRQ1(t)(1− p)n.

Note that g(full, ~Q(t)) ≥ LRpQ1(t), so we have that

g(full, ~Q(t))− g(~mMLQF+FA(t), ~Q(t))

g(full, ~Q(t))

≤ 1
p2

exp
(
−δ

2pL

3

)
+

(1− p)n

p

≤ 1
p2

exp
(
−δ

2pL

3

)
+

1
p

exp
(
−n log

1
1− p

)
=

1
p2

exp
(
−δ

2pL

3

)
+

1
p

exp
(
−
⌊

F

(1 + δ)pL

⌋
log

1
1− p

)
,

and the theorem holds due to Theorem 2.
Remark 3: In typical multichannel wireless networks, we

expect that F = O(L2). In this case, the performance loss
decreases exponentially as a function of F/L.

V. SIMULATION

In this section, we present simulation results to evaluate
the performance of the proposed MLQF-FA-MaxWeight algo-
rithm. The parameters of the simulation are summarized in
Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of users N 50

Number of channels L 50
On probability p 0.4
Channel rate R 1 packet/channel/timeslot

Overall feedback number M 100–1000
Arrival Process Poisson

Simulation duration 30000 iterations

There are five classes of traffic flows in the network: the
mean arrival rate of user 1 is 10α, the mean arrival rate of
users 2 is 6α, the mean arrival rate of users 3 and 4 is 4α,
and the mean arrival rate of users 5 and 6 is 2α, and the mean
arrival rate of users 7, 8, 9, 10 is α, and the mean arrival rate
of users 11 to 50 is 0.2α. In our simulations,α varies from
0.2 to 1.2.

We consider three different scenario: (i) the complete chan-
nel state information is available at the base-station, (ii) the
available feedback bandwidth is limited and is allocated ac-
cording to the MLQF-FA scheme, (iii) the available feedback
bandwidth is limited and is evenly allocated to all mobile
users. When the base-station receives the reported feedback, it
schedules the mobile users using the MaxWeight scheduling.
Figure 1 illustrates the average total queue lengths under dif-
ferent schemes with different traffic loads. We can see that the
MLQF-FA can support a much higher throughput compared to
the even allocation scheme. For example, when 100 channel
states can be reported at a time, the MLQF-FA+MaxWeight
stabilizes the network when the mean of the sum arrival rates
is less than 32, while the evenly-allocating+MaxWeight cannot
stabilize the network when the sum of the arrival rates is more
than 4. Further, when the number of reported channel states is
200, the performance of the MLQF-FA+MaxWeight is almost



the same as the MaxWeight with the complete channel state
information (note that the complete channel state information
requires 2,500 channel states).
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Fig. 1. Average total queue lengths under various feedback allocation
schemes

VI. CONCLUSION

In this paper, we studied multi-channel downlink networks
with limited feedback bandwidth F. We proposed the MLQF-
FA scheme, which dynamically allocates the feedback resource
according to the queue-lengths and channel statistics. We
proved that the throughput difference between the MLQF-
FA+MaxWeight and the MaxWeight with the complete chan-
nel state information decreases exponentially as a function of
F/L when F = O(L2), where the L is the number of shared
fading channels.
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